

PERFORMANCE IS EVERYTHING

This package of information about API Heat Transfer products and solutions was made especially for you based on your unique heat transfer needs. **If there's anything you'd like to add, visit apiheattransfer.com or call your API Heat Transfer contact today.**

Brazed Plate Heat Exchangers
Gasketed Plate Heat Exchangers 2
SIGMASHELL Plate and Shell Heat Exchangers4
SIGMADUAL Semi Welded Plate Heat Exchangers
BP Series7
BP Series BP Series Brochure
BP/BPS/BPCH Series
BP/BPS/BPCH Series BPS Series
BP/BPS/BPCH Series BPCH Series
SIGMAWIG All Welded Plate Heat Exchangers ³⁷
Graphite Block Heat Exchangers
Graphite Tube Heat Exchangers ⁴¹
Get in touch

Brazed Plate Heat Exchangers

Schmidt[®] SIGMABRAZE Plate Heat Exchangers

Our SIGMABRAZE brazed plate heat exchangers represent the most compact, rugged and cost-effective means of transferring heat in many industrial, process, and refrigerant applications. Built from 316 stainless steel with copper brazing materials, they provide exceptional corrosion resistance. Due to the smaller size and reduced material content, they can be the most economical heat transfer choice.

PERFORMANCE NOTES.

- Corrugated plates produce highly turbulent flow in a true counter-current direction, resulting in high efficiency and a very compact heat exchanger design
- Suitable for a wide variety of heat exchanger applications with reliable quality and excellent performance
- Made from 316 stainless-steel plates and copper or nickel brazing materials
- Available with 3/4" to 4" NPT, Soldering SAE Type, or Flanged connections
- Capacities of 20 GPM to 385 GPM, 1/2 Ton to 100 Ton
- Approvals include UL Stamp and ASME UM stamp

APPLICATIONS.

- Refigerant evaporating and condensing
- Heat pumps
- Steam heating
- Transmission or hydraulic oil cooling
- District or zone heating systems
- Swimming pool heating
- Various heating and cooling duties

Gasketed Plate Heat Exchangers

Schmidt[®] SIGMA Gasketed Plate Heat Exchangers

Plate heat exchangers use corrugated plates stacked between a fixed and movable pressure plate. As virtually all of the material is used for heat transfer, plate heat exchangers can have large amounts of effective heat transfer surface in a small footprint. It is not uncommon that a plate heat exchanger will have the same thermal capacity as a shell and tube five times larger. Our plate heat exchangers incorporate superior design features to ensure long-term performance and customer satisfaction.

PERFORMANCE NOTES.

- Unique corrugation pattern pressed onto each plate produces the highest overall heat transfer rate by assuring turbulent flow and excellent fluid distribution across the entire surface
- True counter current flow and high heat transfer rate allows our plate heat exchangers to economically handle close temperature approach requirements
- Highest quality gaskets precisely fit the plate grooves for positive sealing and ease of maintenance
- Superior clip-on gasket design ensures proper fit during closing of the unit
- Double sealing design prevents the possibility of mixing the two process fluids; leak detect feature ensures any leakage is to the atmosphere
- Zinc coated hardware provides long life
- All bolted construction for easier service
- Low volumetric fluid hold-up provides quicker response to heating and cooling demands, while reducing costs for more expensive process fluids
- Readily expanded for greater capacities, or totally new applications
- Available in a variety of plate sizes for industrial, HVAC, power, or food industry applications

OPERATING PARAMETERS.

Temperature	-40°F – 400°F (-29°C – 200°C)
Pressure	Vacuum to 400 psig (30bar)
Capacities	In excess of 20,000 GPM (4,500m ³ /h)
Connections	Up to 20 in. (DN500)

TECHNICAL PARAMETERS.

Plates

APPLICATIONS.

- Chemical
- Pharmaceutical

PRODUCTS & TECHNOLOGIES | GASKETED PLATE HEAT EXCHANGERS

Standard	AISI 304 stainless steel (1.4301) AISI 316L stainless steel (1.4404) AISI 316TI stainless steel (1.4571)	 Food and beverage Dairy products Petrochemical/oil mining Deven plant control on quality and line
Exotics	AISI 904 stainless steel, SMO 254, Nickel alloys, pure nickel, Ti and Ti-Pd alloy	 Power plant central or auxiliary cooling Lube oil cooling
Thickness	0.4 mm to 1.15 mm	
Gaskets		
Standard	Nitrile rubber gasket, EPDM rubber, chloroprene rubber	
Exotics	HNBR, NBR-HT, FPM/FKM, butyl, PTFE coated (SIGMA COAT), food industry certified gasket, AFM hard gaskets, others available	
Attachment Method	SIGMA FIX adhesive-free gasket, or glued gasket	
Frame	Painted carbon steel, or stainless steel (solid and clad)	
Connections		
Standard	Studded with option for liner, flanges (ANSI, DIN), food stuff connections	
Exotics	Ti, SMO, hastelloy, and 904L, others available	
Codes and Standards	ASME, PED, ABS, LRS, GL, BV, GOST	

SIGMASHELL Plate and Shell Heat Exchangers

Schmidt[®] SIGMASHELL All-Welded Plate & Shell Heat Exchanger

Sealless and with a heat transfer surface area up to 700 m², our SIGMASHELL laser-welded plate and shell heat exchangers are ideal for thermal treatment of liquid, vapor, and gas. SIGMASHELL is applicable in all industrial sectors, including chemical and petrochemicals, pharmaceuticals, renewable energies, bio energy, power generation, pulp and paper, steel mills, and coking plants.

OPERATIONAL LIMITS.

- Operating pressures from vacuum to 150 bar
- Operating temperatures from -200°C to 550°C
- Viscosities up to 8,000 mPas

FEATURES.

- Available in all current plate materials
- Shell construction: all-welded or accessible to one or two sides
- Multi-pass possible for shell and plate side
- Calculations can be done for counter-current flow, co-current, and cross flow
- Fishbone corrugation for high and low heat transfer characteristics

SIGMADUAL Semi-Welded Plate Heat Exchangers

Schmidt[®] SIGMADUAL Semi-Welded Plate Heat Exchangers

API Heat Transfer SIGMA**DUAL** semi-welded plate heat exchangers feature plates that are welded using advanced laser welding techniques. Two plates are welded together and can be fitted with a Viton[®] O-Ring and/or Teflon[®] gasket liner. The resulting plate pack has every other plate fully serviceable, while maintaining integrity of the welded plate pair. This is especially suitable for critical fluids and gases, such as ammonia or caustic process chemicals where fluid loss is not acceptable. In the case of ammonia refrigeration, the reduced volume results in significant savings.

Operating Parameters

	Temperature: Pressure: Capacities: Connections:	-40°F - 320°F (-29°C - 200°C) Vacuum to 460 psig (35bar) up to 3500 GPM (2000m³/h) 3" to 14"- Studded or Flanged
Technical F	Parameters	
Plates	Standard:	AISI 304 (1.4301) AISI 316L (1.4404) AISI 316Ti (1.4571)
	Exotics:	AISI 904 SMO 254 Nickel Alloy, Ti, and Ti-Pd Alloy
	Thickness:	0.6 mm to 0.8 mm
Gaskets	Standard	Nitrile Rubber Gasket, EPDM Rubber, Chloroprene Rubber

PRODUCTS & TECHNOLOGIES | SIGMADUAL SEMI-WELDED PLATE HEAT EXCHANGERS

	Exotics:	HNBR, NBR-HT, FPM/FKM, Butyle, PTFE coated (SIGMA COAT), Food Industry Certified Gaskets
Attachment I	Method	SIGMAFIX Adhesive-free Gasket, or Glued Gasket
Frame	Painted Carbon Steel	
Connections	Standard:	Studded with optional 304/316 liner, flange, FPT
	Exotics:	Ti, SMO, Hastelloy, and 904L
Codes and St	andards	ASME, PED, ABS, LRS, GL, BV, GOST

*Teflon is a registered trademark of E. I. du Pont de Nemours and Company Semi-Welded Plate Pair with *Teflon Gasket

BP Series

Thermal Transfer Products Process Coolers

Our Thermal Transfer Products brand offers a full line of process cooling heat exchangers.

Water-Cooled

Fixed bundle shell and tube U-Tube Removable Bundle Stainless Steel brazed plate Large range of standard sizes

Air-Cooled

Copper-tube and fin Brazed aluminum

Large range of standard sizes

Standard Product Options

Thermal Transfer process coolers are available with a wide variety of standard options to best suit each application.

Water-Cooled

Copper, copper-nickel, or stainless steel tubing Nickel-braze plate coolers

Air-Cooled

AC, hydraulic, or air-motor fan drives Copper tube aluminum fin Brazed aluminum (P-BAR) Heresite coating for offshore or corrosive environment operation

Customer Focused and Driven

All catalog product is available with short lead-times Expert application engineers available to select and size the right product for your application Custom designs are available **For application help and quoting, visit our <u>Full TTP site</u> or**

contact <u>ttpsales@apiheattransfer.com</u>.

Thermal Transfer Products \checkmark

An API Heat Transfer Company

Brazed Plate Heat Exchangers for Fluid Power Applications

BPSeries

2014

We **COOL** what you **POWER**

BP Series

Our BP Series heat exchangers are rugged, compact, cost-effective and reliable over long periods of time with minimal maintenance – an optimal heat transfer solution for compact industrial applications. 316 stainless steel construction and standard SAE connections are features of this highly efficient technology. The compact design and multiple mounting options lead to optimization of heat transfer when space is limited. High plate channel turbulence means effective performance even with close approach temperatures. Our wide offering of standard models ensures fast delivery worldwide. Custom applications always welcome!

Standard **BPSW** Series: full featured with short lead time

Made to Order **BPW** Series: customized solutions

A BP Series heat exchanger is one of the most efficient ways to transfer heat today.

SIZE

Design options for heat transfer applications sensitive to weight and space claim can now include the BP Series.

REDUCED HEAT EXCHANGER FLUID VOLUMES

BP Series units hold a minimal volume of fluids. This feature favorably affects material content and overall system footprint.

MATERIAL BENEFIT

BP Series units are gasket-free allowing approximately 95% of the heat exchanger surface to be in effective contact with fluids

PERFORMANCE

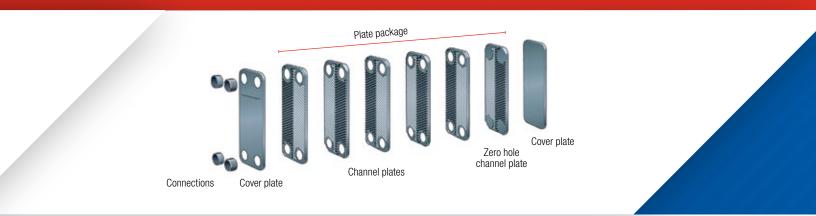
High flow turbulence in plate channels brings the benefit of efficient heat transfer even when hot / cold fluid temperature difference is minimal (close approach temperature).

STANDARD MODELS AND CUSTOMIZED SOLUTIONS

A wide offering of standard BPSW models means short lead times and fast delivery worldwide. Our BPW Series offers customized solutions for your specific applications.

EFFICIENCY ON A GLOBAL SCALE

BP Series units have global applications in demanding, compact applications. Efficient performance is the product of focused research and development activities. 40+ years of engineering experience stands behind all solutions offered by Thermal Transfer Products.

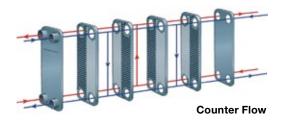

APPROVALS

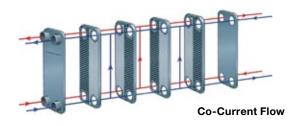
TTP BP Series heat exchangers are approved by leading independent third-party international bodies:

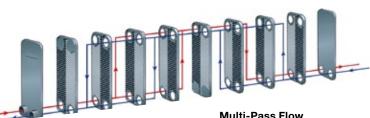
- **Canada:** Canadian Standard Association (CSA)
- Japan: The High Pressure Gas Safety Institute of Japan (KHK)
- **USA:** Underwriters Laboratories (UL)
- **Europe:** Pressure Equipment Directive (PED)

Brazed Plate Heat Exchangers Explained

A brazed plate heat exchanger is constructed as a series of corrugated channel plates stacked between front and rear cover plates. The cover plates can be configured with sealing plates or with blind rings. Connections are mounted on the cover plates and can be customized to meet specific market and application requirements. During the vacuum brazing process, a brazed joint is formed at every contact point between the base and the filler material. This design creates a heat exchanger with two separate channels or circuits.


Sealing plates are used to seal off the space between the cover plate and the first and last channel plates. The number of cover plates varies with the type and size of the exchanger and pressure rating. Some brazed plate heat exchangers have a blind ring to seal off the space between the channel plate and the cover plate. In others, the blind rings are integrated in the cover plate and first/ last channel plates.


Plates and Channel Types


Brazed plate heat exchangers are also available with optional variation in channel plate corrugation within one unit. This feature can bring benefits to hydraulic and thermal performance. As an example, one heat exchanger can have equal pressure drop for both channels even with different flow rates in each.

Fluids can pass through the heat exchanger in different ways. Flow configurations are either:

- Counter Flow standard plumbing method for typical opposing flow paths
- Co-Current Flow configurable by plumbing for same direction flow paths
- Multi-Pass Flow BPW only, custom plate configuration to allow oil to flow multiple passes in cooler, Ideal for low flow applications

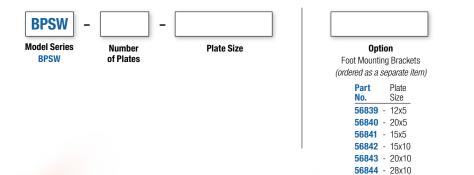
Multi-Pass Flow

BPSW Series - Standard Model

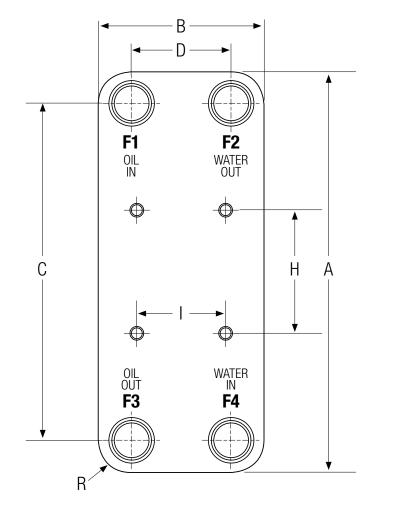
STAINLESS STEEL CONSTRUCTION

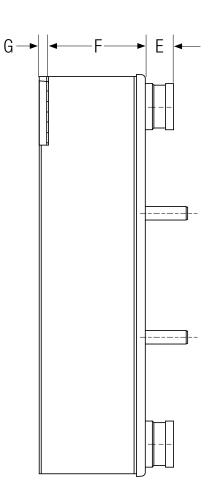
Features

- Short Lead Time
- Stacked Plate
- Stainless Steel
- Copper Brazed
- Oil to Water Applications
- High Performance
- Compact Design
- SAE Connections
- Corrosion Resistant Type 316 Stainless Steel Plates
- Mounting Studs Standard (except 8x3 plates)
- SAE Oil Connections, NPT Water Connections
- Optional Foot Mounting Bracket (except 8x3 plates) SEE PAGE 13


Ratings

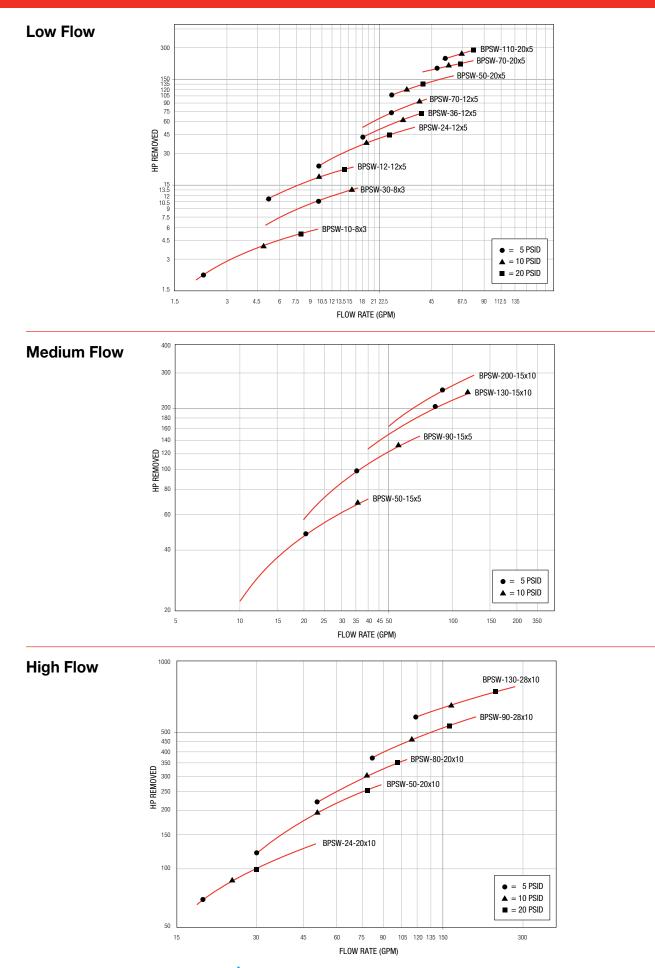
Maximum Working Pressure 450 psi Test Pressure 650 psi Minimum Working Temperature -320°F Maximum Working Temperature 437°F


Materials


Plate Material - Fluid Contact 316 Stainless Steel Braze Material Copper Connectors 316 Stainless Steel Stud Bolts 304 Stainless Steel Foot Mounting Bracket Carbon Steel

How to Order

Dimensions



												Stud	Bolt		Net Weight
Model	Α	В	C	D	E	F	G	F3, F1	F2, F4	Н	I	Thread	Length	R	(lbs)
BPSW-10-8x3	7.6	2.98	6.06	1.57	0.79	1.04	0.28	#10 SAE	34" NPT	NA	NA	NA	NA	0.70	2.05
BPSW-30-8x3	7.6	2.98	6.06	1.57	0.79	2.80	0.28	#10 SAE	34" NPT	NA	NA	NA	NA	0.70	3.99
BPSW-12-12x5	11.4	4.69	9.57	2.83	1.78	1.21	0.24	#12 SAE	34" NPT	5.51	2.36	M8	0.76	0.90	5.60
BPSW-24-12x5	11.4	4.69	9.57	2.83	1.78	2.27	0.24	#12 SAE	34" NPT	5.51	2.36	M8	0.76	0.90	8.14
BPSW-36-12x5	11.4	4.69	9.57	2.83	1.78	3.33	0.24	#20 SAE	1¼" NPT	5.51	2.36	M8	0.76	0.90	10.68
BPSW-70-12x5	11.4	4.69	9.57	2.83	1.78	6.32	0.24	#20 SAE	1¼" NPT	5.51	2.36	M8	0.76	0.90	17.87
BPSW-50-20x5	20.7	4.69	18.5	2.48	1.07	4.56	0.24	#20 SAE	1¼" NPT	8.86	2.36	M8	1.19	0.90	23.04
BPSW-70-20x5	20.7	4.69	18.5	2.48	1.07	6.32	0.24	#20 SAE	1¼" NPT	8.86	2.36	M8	1.19	0.90	30.28
BPSW-110-20x5	20.7	4.69	18.5	2.48	1.07	9.84	0.24	#20 SAE	1¼" NPT	8.86	2.36	M8	1.19	0.90	44.74
BPSW-50-15x5	14.8	4.69	12.6	2.48	1.07	4.56	0.24	#20 SAE	1¼" NPT	8.86	2.36	M8	0.79	0.90	17.04
BPSW-90-15x5	14.8	4.69	12.6	2.48	1.07	8.08	0.24	#20 SAE	1¼" NPT	8.86	2.36	M8	0.79	0.90	27.62
BPSW-130-15x10	15.5	9.57	12.76	6.85	1.07	12.28	0.12	#24 SAE	1½" NPT	5.51	3.94	M12	0.75	1.38	112.85
BPSW-200-15x10	15.5	9.57	12.76	6.85	1.07	18.72	0.12	#24 SAE	1½" NPT	5.51	3.94	M12	0.75	1.38	165.32
BPSW-24-20x10	20.7	9.57	17.95	6.85	1.07	2.55	0.16	#24 SAE	1½" NPT	5.51	3.94	M12	1.53	1.38	44.02
BPSW-50-20x10	20.7	9.57	17.95	6.85	1.07	4.89	0.16	#24 SAE	1½" NPT	5.51	3.94	M12	1.53	1.38	67.17
BPSW-80-20x10	20.7	9.57	17.95	6.85	1.07	7.59	0.16	#24 SAE	1½" NPT	5.51	3.94	M12	1.53	1.38	93.89
BPSW-90-28x10	27.3	9.57	23.62	5.83	2.13	8.73	0.04	21/2" SAE Flg	21⁄2" NPT	12.13	3.94	M12	1.53	1.89	148.24
BPSW-130-28x10	27.3	9.57	23.62	5.83	2.13	13.11	0.04	21/2" SAE Flg	21⁄2" NPT	12.13	3.94	M12	1.53	1.89	198.24

All dimensions are inches, unless noted otherwise.

Note: We reserve the right to make reasonable design changes without notice.

Performance Curves

Performance Correction

Pressure Drop Correction

5 CORRECTION FACTOR 3 0 1000 200 400 600 800 1200 0 OIL VISCOSITY (SSU)

	Model	Oil Conn (Female)	Water Conn (Female)
	BPSW-10-8x3	#10 SAE	34" NPT
	BPSW-30-8x3	#10 SAE	34" NPT
	BPSW-12-12x5	# 12 SAE	34" NPT
LOW	BPSW-24-12x5	# 12 SAE	34" NPT
SMALL FLOW	BPSW-36-12x5	#20 SAE	1¼" NPT
SM₽	BPSW-70-12x5	#20 SAE	11⁄4" NPT
	BPSW-50-20x5	#20 SAE	1¼" NPT
	BPSW-70-20x5	#20 SAE	1¼" NPT
	BPSW-110-20x5	#20 SAE	1¼" NPT
MC	BPSW-50-15x5	#20 SAE	11⁄4" NPT
MEDIUM FLOW	BPSW-90-15x5	#20 SAE	1¼" NPT
DIUN	BPSW-130-15x10	#24 SAE	11/2" NPT
ME	BPSW-200-15x10	#24 SAE	11⁄2" NPT
	BPSW-24-20x10	#24 SAE	11/2" NPT
M0-	BPSW-50-20x10	#24 SAE	11⁄2" NPT
ARGE FLOW	BPSW-80-20x10	#24 SAE	11/2" NPT
LAR	BPSW-90-28x10	21/2" SAE FLG	21⁄2" NPT
	BPSW-130-28x10	21/2" SAE FLG	21⁄2" NPT

Performance Curves are based on 100SSU oil at 40°F approach temperature (125°F oil leaving cooler, 85°F water entering cooler), 2:1 oil: water ratio (1 GPM water flow for each 2 GPM oil flow).

Step 1 Determine Curve Horsepower Heat to be Removed.

Horsepower heat load	Х	40 Oil leaving cooler °F minus water entering cooler °F	Х	Performance correction multiplier	=	Curve horsepower heat to be removed
-------------------------	---	---	---	---	---	--

Determine Actual Oil Pressure Drop. Pressure drop shown on curve x Pressure drop correction multiplier = Actual pressure drop.

Oil Temperature

Oil coolers can be selected by using entering or leaving oil temperatures.

Typical operating temperature ranges are:

Hydraulic Motor Oil	110°F - 130°F
Hydrostatic Drive Oil	130°F - 180°F
Lube Oil Circuits	110°F - 130°F
Automatic Transmission Fluid	200°F - 300°F

Desired Reservoir Temperature

Return Line Cooling: Desired temperature is the oil temperature leaving the cooler. This will be the same temperature that will be found in the reservoir.

Off-Line Recirculation Cooling Loop: Desired temperature is the temperature entering the cooler. In this case, the oil temperature change must be determined so that the actual oil leaving temperature can be found. Calculate the oil temperature change (Oil $\triangle T$) with this formula:

Oil △T=(BTU's/Hr.)/GPM Oil Flow x 210).

To calculate the oil leaving temperature from the cooler, use this formula:

Oil Leaving Temperature = Oil Entering Temperature - Oil \triangle T.

This formula may also be used in any application where the only temperature available is the entering oil temperature.

Oil Pressure Drop: Most systems can tolerate a pressure drop through the heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided. Care should be taken to limit pressure drop to 5 PSI or less for case drain applications where high back pressure may damage the pump shaft seals.

5

BPW Series - Made to Order Model

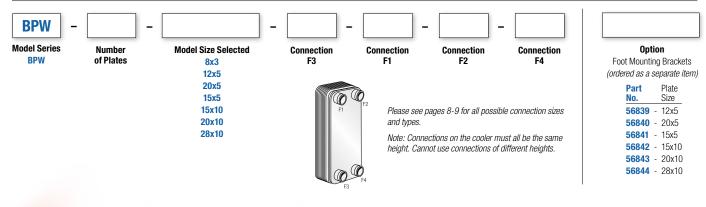
STAINLESS STEEL CONSTRUCTION

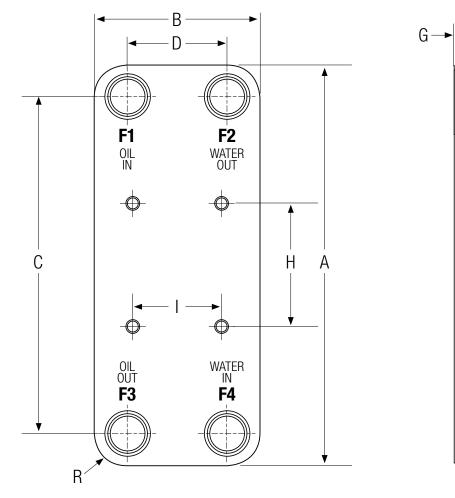
Features

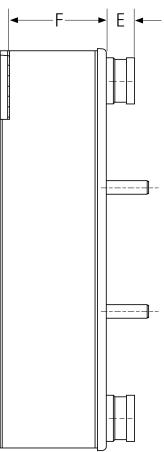
- Customizable sizes and options
- Stacked Plate
- Stainless Steel
- Copper Brazed
- High Performance
- Compact Design
- Corrosion Resistant Type 316 Stainless Steel Plates
- Mounting Studs Standard (except 8x3 plates)
- Optional Foot Mounting Bracket (except 8x3 plates) SEE PAGE 13

Ratings

Materials


Maximum Working Pressure 450 psi Test Pressure 650 psi Minimum Working Temperature -320°F Maximum Working Temperature 437°F at 450 psi


Pressure rating is for copper brazed only. Consult factory for alternatives. 316 Stainless Steel Braze Material Copper *Nickel Optional* Connectors 316 Stainless Steel Stud Bolts 304 Stainless Steel


Plate Material - Fluid Contact

Foot Mounting Bracket Carbon Steel

How to Order

										Stud	Bolt		Approximate
Model	Α	В	C	D	E	F	G	H		Thread	Length	R	Weight (lbs)
BPW-NoP-8x3	7.6	2.98	6.06	1.57		0.157 + 0.088 x NoP	0.28	NA	NA	NA	NA	0.70	1.082 + 0.097 x NoP
BPW-NoP-12x5	11.4	4.69	9.57	2.83		0.157 + 0.088 x NoP	0.24	5.51	2.36	M8	0.79	0.90	3.058 + 0.21 x NoP
BPW-NoP-20x5	20.7	4.69	18.50	2.48	See	0.157 + 0.088 x NoP	0.24	8.86	2.36	M8	1.19	0.90	4.967 + 0.362 x NoP
BPW-NoP-15x5	14.8	4.69	12.60	2.48	Connection	0.157 + 0.088 x NoP	0.24	8.86	2.36	M8	0.79	0.90	3.814 + 0.265 x NoP
BPW-NoP-15x10	15.5	9.57	12.76	6.85	Tables	0.315 + 0.092 x NoP	0.12	5.51	3.94	M12	0.75	1.38	15.41 + 0.75 x NoP
BPW-NoP-20x10	20.7	9.57	17.95	6.85		0.394 + 0.090 x NoP	0.16	5.51	3.94	M12	1.53	1.38	22.641 + 0.891 x NoP
BPW-NoP-28x10	27.3	9.57	23.54	5.83		0.630 + 0.096 x NoP	0.04	12.13	3.94	M12	1.53	1.89	35.741 + 1.25 x NoP

NoP = Number of Plates

All dimensions are inches, unless noted otherwise.

Note: We reserve the right to make reasonable design changes without notice.

Connection Options

Model	Connection Types	Size	Height (E)
	SAE	5∕8" O-Ring	0.79
		8.2	0.79
		12.2	0.79
		10	0.79
	Solder	15.9	0.79
		12.8	0.79
		16	0.79
		22	0.79
		1/2"	0.79
	ISO-G	3⁄4"	0.79
		3/8"	0.79
BPW-NoP-8x3	ISO-G	1/2"	0.79
	INT Hex	3⁄4"	0.79
		5/8"	0.79
	UNF	3/4"	0.79
		1⁄2" INT	0.79
		3⁄8" INT	0.79
		3⁄4" INT	0.79
	NPT	1/2" (M)	0.79
		3⁄4" (M)	0.79
		34" & 16 (Combo M)	0.79
		1" (M)	0.79
		1" 0-Ring	1.06
	SAE	1 ¹ / ₄ " O-Ring (Setting Up)	1.06
		12.8	0.79
		16	0.79
	Solder	22U	0.79
	Colder	28U	0.79
BPW-NoP-12x5		35.1	0.79
DF WEINUF FIZAJ		34"	0.79
	UNF	5%"	0.79
		1" INT	1.06
	NPT	1" (M) 1⁄2" INT	1.77
		¹ /2 IN1 3/4" (M)	0.79 0.79
	SAE		
	SAE	1/4" O-Ring	1.06
		6.5	1.06
		35.1	1.77
	Solder	420	1.06
		280	1.06
		12.8	1.06
		16	1.06
BPW-NoP-15x5		11/4" INT	1.77
		11/4" INT HEX	1.06
	ISO-G	1⁄2" (M)	1.06
		11⁄4" (M)	1.77
		1" (M)	1.06
		1½"	1.06
		1⁄2" INT	1.06
	NPT	11⁄4" (M)	1.06
		11/4" INT (F)	1.77

Model	Connection Types	Size	Height (E)
	SAE	11/4" O-Ring	1.06
		6.5	1.06
		35.1	1.77
		42U	1.06
	Solder	12.8	1.06
		28U	1.06
		22U	1.06
		16	1.06
		11⁄4" INT	1.77
		11/4" INT HEX	1.06
	-	1⁄2"	1.06
	ISO-G	11⁄4" (M)	1.77
BPW-NoP-20x5	-	1"	1.06
		1½" (M)	1.77
		1" INT HEX	1.06
		1⁄2" INT	1.06
		11⁄4" (M)	1.06
	NPT	11⁄4" INT (F)	1.77
		1" INT (F)	1.77
		11⁄4" INT (F)	1.77
		11⁄4" (M)	1.77
	Victaulic	1½"	1.06
		11⁄4" (M)	1.06
		1 ½"	1.77
	SAE	11/2" O-Ring	1.06
		16	1.06
		54.3	1.06
		12.8	1.06
	Solder	22U	1.06
		28U	1.06
		35.1	1.06
		42U	1.06
BPW-NoP-15x10	ISO-G	1½"	1.06
		2" (M)	1.06
		1½" (M)	1.06
	NPT	11/2" INT (F)	1.06
		34" INT (F)	1.06
		1½"	1.06
		2"	1.06
	Victaulic	2"	2.13
		21⁄2"	2.13

All dimensions are in inches, unless noted otherwise.

Note: Connections on the cooler must all be the same height. Cannot use connections of different heights.

Model	Connection Types	Size	Height (E)
	SAE	1½" O-Ring	1.06
		16	1.06
		54.3	1.06
	Coldor	12.8	1.06
	Solder	22U	1.06
		28U	1.06
		35.1	1.06
BPW-NoP-20x10	ISO-G	1½"	1.77
		1½" (M)	1.06
	NPT	11/2" INT (F)	1.06
		2" (M)	1.06
		1½"	1.06
) (Lata - Jha	2"	1.06
	Victaulic	2"	2.13
		21⁄2"	2.13
	SAE	Flange connection is set up	2.13
		54.3	2.13
		70U	2.13
	0.11	42U	2.13
	Solder	66.85	2.13
		35.1	2.13
		76U	2.13
		2"	2.13
	ISO-G	21⁄2"	2.13
BPW-NoP-28x10		3"	2.13
	NDT	21⁄2" (M)	2.13
	NPT	2½" INT (F) is setup	2.13
		21⁄2"	1.18
		3"	1.18
	SAE Flange	1½" Round	1.18
		2" Round	1.18
	DIN Compact	2" Round DN65C cs	1.18 2.13

All dimensions are in inches, unless noted otherwise.

Note: Connections on the cooler must all be the same height. Cannot use connections of different heights.

Optional Connection Types

Internally threaded (female)

Internally threaded (female) with Hexagonal exterior

Externally threaded (male)

Victualic

Solder

Combo

Welding

DIN/DNC Type

9

Plate Limits

Model	Number of Plates	HP Removed	Max Oil Flow GPM
	10	2	2
	20	4	4
RDW NoD 8v2	30	8	6
	40	11	8
BPW-NoP-8x3	50	16	12
	60	22	16
	70	26	18
	80	27	18.5
	10	8	4
	20	20	10
	30	29	14
	40	38	18
	50	52	22
	60	59	24
	70	64	26
BPW-NoP-12x5	80	72	30
	90	84	34
	100	95	38
	110	106	40
	120	112	42
	130	120	42
	140	125	42
	10	7	3
	20	11	6
	30	22	9
	40	33	14
	50	46	18
	60	57	22
	70	65	28
BPW-NoP-15x5	80	73	34
	90	88	38
	100	98	42
	110	106	46
	120	122	56
	130	150	66
	140	177	78
	10	11	3
	20	24	6
	30	38	9
	40	54	13
	50	71	17
	60	87	21
	70	103	25
BPW-NoP-20x5	80	120	29
	90	163	40
	100	190	46
	110	218	52
	120	245	58
	120	245	64
	100	200	04

Model	Number of Plates	HP Removed	Max Oil Flow GPM
	10	14	8
	20	30	16
	30	46	26
	40	63	34
	50	76	40
	60	90	46
	70	106	54
	80	122	64
BPW-NoP-15x10	90	150	74
	100	163	80
	110	177	90
	140	204	100
	170	231	110
	200	259	120
	230	299	130
	250	327	130
	10	19	4
	20	41	8
	30	68	12
	40	90	16
	50	112	20
	60	141	26
	70	171	34
	80	212	44
BPW-NoP-20x10	90	245	54
	100	286	60
	110	313	66
	140	381	80
	170	449	90
	200	517	95
	230	571	105
	250	612	110
	20	54	10
	40	109	20
	60	177	30
	80	231	40
	100	313	60
	120	408	80
	140	490	100
BPW-NoP-28x10	140	585	120
2	180	694	150
	200	789	130
	200	898	220
	240	966	220
	240	1088	220
	280	1361	310
	280	1497	350

Based on 100 SSU Oil, 40°F Approach Temperature, 2:1 Oil-Water Flow Ratio NoP = Number of Plates

Accessories

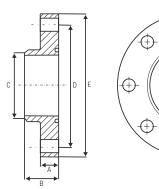
All dimensions are inches unless noted otherwise.

ØF(Nx)

(+

Œ

 \oplus


 \oplus

BP Series accessories meet the same high standards as our BP Series line of heat exchangers. The highquality materials are carefully chosen for compatibility, while the accurate dimensions save you time and money on installation. With TTP accessories you have the assurance that everything will fit – and perform – the way the design engineers intended.

Counter Flanges

To increase the flexibility for units with standard threaded connections, TTP offers a range of compact flanges. The threaded part is easily assembled to the connections and the counter flange welded to your pipe.

Dimensions

Part No.	Size	A	В	C	D	E	F
56811	DN20C	.39	.79	1.06	2.09	2.80	.43
56812	DN25C	.39	.79	1.33	2.48	3.31	.51
56813	DN50C	.47	.94	2.37	3.58	4.41	.51
56814	DN65C	.47	.94	3.00	4.17	4.91	.51
56815	DN80C	.59	1.18	3.50	4.65	5.55	.51
56816	DN100C	.59	1.18	4.50	5.67	6.50	.51
56817	DN150C	.87	1.73	6.63	8.54	9.84	.51

Ratings (according properties of gasket) Maximum Working Pressure Minimum Working Temperature Maximum Working Temperature

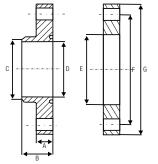
580 psi 5°F 392°F

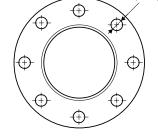
Materials

Stainless Steel

Carbon Steel flanges available. Consult factory for additional information.

Standard Connections


TTP counter flanges are used to connect your pipe to our compact flanges on the BPHE unit.


Flange Kits

To increase the flexibility for units with standard threaded connections, TTP offers a range of compact flange kits. The threaded part is easily assembled to the connections and the counter flange welded to your pipe.

Ø.51 (N x)

Dimensions

Part No.	Size	A	В	C	D	E	F	G	N
56818	2"	.47	1.46	DN50	1.54	G2"	3.58	4.41	.31
56819	2½"	.47	1.46	DN65	2.36	G2½"	4.17	4.92	.31

Ratings (according properties of gasket)

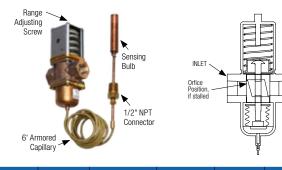
Maximum Working Pressure	580 psi
Minimum Working Temperature	5⁰F
Maximum Working Temperature	392⁰F

Materials

Stainless Steel

Carbon Steel flanges available. Consult factory for additional information.

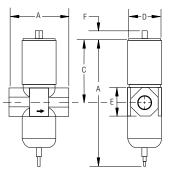
Standard Connections


Screw-on flanges are used to convert our ISO-G connections to weld neck compact flanges.

Modulating Water Valves and Bulb Wells

These modulating valves regulate the flow of water to the heat exchanger to maintain a desired exiting oil temperature. They open automatically when temperature increases at the sensing bulb. **No** external power source is required to actuate the valve. **Not** to be used for salt water service.

Bulb Wells are used in conjunction with Remote Bulb Temperature Controls where bulb insertion into a vessel or container to sense temperature is required. Standard and custom bulb well lengths available.

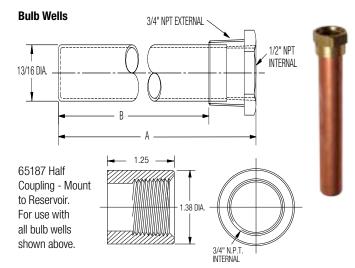

Part No.	Pipe Size (NPT)	Range (Opening Point)	Sensing Bulb Size Diameter x Length	Maximum Water Flow (GPM)	Bulb Well Recommended Size
65293	1⁄2"	115°F - 180°F	¹¹ ⁄16" x 31⁄4"	25	L-65140
65127	3⁄4"	115°F - 180°F	¹¹ / ₁₆ " x 3½"	40	L-65140
65128	1"	115°F - 180°F	¹¹ ⁄16" x 6"	55	L-65141
65146	1¼"	115°F - 180°F	¹¹ ⁄16" x 6"	75	L-65141
65511	1⁄2"	75°F - 135°F	¹¹ ⁄16" x 10"	25	L-65280
65253	3⁄4"	75°F - 135°F	¹¹ ⁄16" x 10"	40	L-65280
65254	1"	75°F - 135°F	¹¹ ⁄16" x 161⁄4"	55	L-67438
65255	1¼"	75°F - 135°F	¹¹ / ₁₆ " x 16½"	75	L-67438
66100	11/2" ASME	75°F - 115°F	¹¹ / ₁₆ " x 16½"	90	L-67438
67173	2" ASME	75°F - 115°F	¹¹ ⁄16" x 43"	150	L-67808

Working pressure to 150 PSI Maximum. *For additional protection of the bulb well stem, use the next longer bulb well.

ADJUSTMENT: $\frac{1}{2}$ " to $\frac{1}{4}$ " valves can be adjusted with a screwdriver, $\frac{1}{2}$ " and 2" have a $\frac{1}{2}$ " square shaft. Turn the adjusting screw clockwise to **decrease** opening temperature; and counterclockwise to **increase** opening temperature. Valves are not calibrated, so final desired temperature setting must be established experimentally. Valve is fully open 36°F above opening point.

Water Valve Specifications

Part No.	By-Pass Orifice Diameter	Maximum Bulb Temperature	Opening Temperature (Factory Setting)
65293	.062"	200°F	135°F
65127	.062"	200°F	135°F
65128	.093"	200°F	135°F
65146	.093"	200°F	135°F
65511	.062"	155°F	103°F
65253	.062"	200°F	135°F
65254	.062"	200°F	135°F
65255	.093"	200°F	135°F
66100	.093"	200°F	135°F
67173	.062"	155°F	103°F


Standard temperature elements are furnished with 6' capillary. Longer capillary lengths not available. Valve Disc: Buna N in brass disc retainer.

Water Valve Dimensions

Valve Size	Α	В	C	D	E	F
1⁄2"	31⁄4	7	3¾	1 ²⁷ / ₃₂	1½	¹² / ₃₂
3⁄4"	3%16	729/64	351/64	21/32	1¾	12/32
1"	427/32	1013/16	5 ³¹ ⁄64	25/8	2	1/2
1¼"	455/64	1037/64	5 ⁴³ ⁄64	25⁄8	23⁄8	1/2
1½"	55/16	1037/64	5 ⁴³ ⁄64	25⁄8	See	1/2
2"	65%	1233/64	615/32	3½	flange specs	1/2

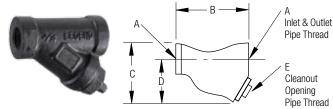
Flange Specifications

Valve Size	# of Bolt Holes	Bolt Hole Size	Bolt Circle	Flange Diameter
1⁄2"	4	5/8	31/8	5
2"	4	3⁄4	4¾	6

Bulb Well Dimensions

Part No.	А	В
65140	4 ¹⁵ / ₃₂	315/32
65141	71/32	67⁄32
65280	117⁄32	107⁄32
67438	17 ¹⁵ ⁄32	1615/32
67808	443⁄8	43%

Custom Bulb Well lengths available. Consult factory for additional information.


Materials

Tube	Copper
Fitting	Brass

Accessories

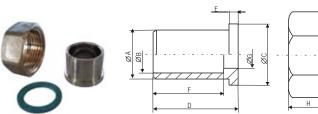
All dimensions are inches unless noted otherwise.

Water Strainers

Dimensions

Part No.	A NPT	B	C	D	E
65294	3/8	3.08	2.52	1.88	1⁄4
65295	1/2	3.08	2.52	1.88	1⁄4
65296	3⁄4	3.87	3.07	2.32	1⁄4
65297	1	4.44	3.77	2.81	3/8
65301	1¼	5.25	4.32	3.18	3/8
65302	1½	6.25	5.10	3.77	1⁄2
65303	2	7.63	6.25	4.65	1⁄2

Rating


Maximum Working Pressure 300 psi

Materials

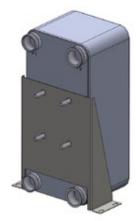
Housing	Bronze
Screen	20 Mesh, 304 Stainless Steel Wire

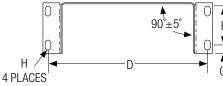
COSD Connection for Soldering

For standard thread-connections of TTP BPHE, the welding sleeve with union nut can be used to connect pipes with the connection of the heat exchanger. According to the quality of the used medium, the welding sleeve can be chosen in carbon or stainless steel. The soldering connection consists of a union nut, a gasket and a soldering sleeve. COSD connections are suitable for refrigerant applications.

Dimensions

Part No.	Nominal diameter	A	в	C	D	E	F	G	н	Opening of the spanner
56831	3⁄4"	.86	.71	.94	.67	.12	.57	.59	.63	1.18
56832	1"	1.02	.87	1.18	.75	.12	.59	.75	.67	1.42
56833	1¼"	1.38	1.10	1.52	.98	.12	.79	.98	.71	1.81
56834	2"	1.90	1.65	2.20	1.26	.16	1.02	1.54	.94	2.56
56835	2½"	2.36	1.13	2.83	1.46	.19	1.22	2.00	1.02	3.35

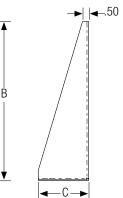

The used gasket has a thickness of .079" (2mm)


Materials

Union nut	MS58
Soldering sleeve	Rg5
Gasket	Hecker-Centellen WS 3820

Mounting Bracket

Optional Foot Mounting Bracket (except 8x3 plates). Constructed of Carbon Steel.



 \oplus

 \oplus

 \oplus

 \oplus

Part No.	Plate Size	A	В	C	D	E	G	н
56839	12x5	7.99	9.35	3.15	7.17	1.77	0.69	.40 x .59
56840	20x5	7.99	15.65	3.15	7.17	1.77	0.69	.40 x .59
56841	15x5	7.99	12.74	3.15	7.17	1.77	0.69	.40 x .59
56842	15x10	13.20	12.40	3.94	12.40	2.64	0.65	.40 x .75
56843	20x10	13.51	14.37	3.94	12.72	2.64	0.65	.40 x .75
56844	28x10	13.20	21.30	3.94	12.40	2.64	0.65	.40 x .75

All dimensions are in inches, unless noted otherwise.

Mounting bracket for location purposes only. Bracket is not designed to support entire weight of the cooler. Customer to add extra support if necessary.

13

Accessories

unless noted otherwise

Thermal Bypass Assembly

This thermal bypass valve is ideally suited for hydrostatic drive circuits which require fast warm-up, controlled fluid temperature, and low return line back pressure. When installed in the return line of a hydraulic circuit that employs an oil cooler, this device will modulate fluid temperature by either shifting return line flow through the cooler, or bypassing directly to the reservoir. In addition, a built-in pressure relief function automatically relieves excess pressure to the reservoir should the cooler become restricted and resultant pressure drop become too high for the cooler circuit.

Standard Shift Temperatures

100°F (38°C) 120°F (49°C) 140°F (60°C) 160°F (71°C)

Full Shift (Cooler Port Open) Temperatures

Shift temperature plus 25°F (14°C)

Relief Valve Setting 65 psi (4.5 bar) Consult factory for other pressure settings.

Maximum Operating Pressure 250 psi (17 bar)

Proof Pressure 300 psi (21 bar)

Minimum Burst Pressure

Up to the full shift temperature: 325 psi (22 bar). Above the full shift temperature: 600 psi (41 bar).

Minimum Operating Temperature -30°F (-34°C)

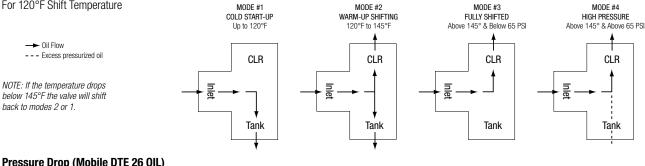
Maximum Operating Temperature Shift temperature plus 75°F (24°C)

Maximum Flow Rating 60 gpm (227 l/m)

Leakage @ 250 psi (17 bar) and 60 gpm (227 l/m) Inlet Flow Cooler Port:

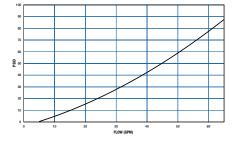
- 0.5 gpm (2 I/m) maximum up to 5°F (3°C) before shift temp.
- 1.0 gpm (4 I/m) maximum from 5°F (3°C) before shift to shift.

Tank Port: 0.10 gpm (0.4 l/m) maximum

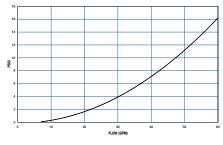

Operating Fluid Mineral base hydraulic fluids

Construction Aluminum die-cast housing

Operating Characteristics

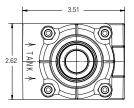

- Mode 1: At temperatures below the shift temperature oil flows from inlet to tank port.
- Mode 2: At temperatures between the start of shift and full shift the flow from the inlet port is divided between the cooler and tank ports.
- Mode 3: At temperatures above the full shift temperature inlet flow is through the cooler port.
- Mode 4: At temperatures above the full shift temperature the excess pressure is relieved through the tank port.

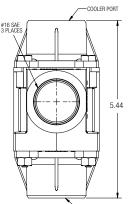
For 120°F Shift Temperature

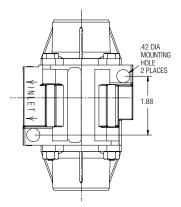


Pressure Drop (Mobile DTE 26 OIL)


Inlet Port Thru Tank Port @ 100°F (300 SUS)






Inlet Port Over Integral Relief Valve @ 170°F (78 SUS)

NOTE: Pressure drop shown is added to relief valve crack pressure for total pressure drop.

TANK PORT

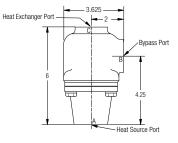
Part No. А 65654 100°F (38°C) 65655 120°F (49°C) 65655 140°F (60°C) 65655 160°F (71°C)

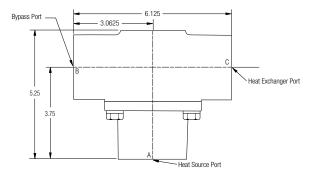
Accessories All dimensions are inches unless noted otherwise.

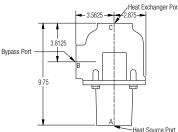
Three-Way Thermostatic Valves

TTP thermostatic valves use the principle of expanding wax. A self-contained power element activates a stainless steel sliding valve that provides a positive three-way valve action. All temperature settings are factory set. Elements are field replaceable to obtain the same, or a new bypass temperature setting. Valves may be installed for either mixing or diverting modes of operation at the preference of the user. They may be mounted in any plane. Valves are acceptable for oil or water service.

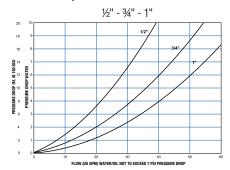
Part No.

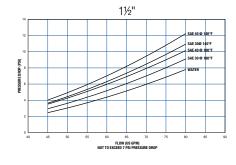

Rating


Maximum Operating Pressure 125 psi


Materials

Housing **O-Ring Seals**


Grey Iron (Steel or Bronze optional) Viton (Buna N optional)

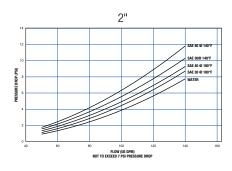


Pressure Drop Curves

66037-110°F	1/2" NPT
66037-140°F	1/2" NPT
66038-110°F	3/4" NPT
66038-140°F	3/4" NPT
66039-110°F	1" NPT
66039-140°F	1" NPT
67365-110°F	#16 SAE
67365-140°F	#16 SAE
66040-110°F	1-1/2" NPT
66040-140°F	1-1/2" NPT
67760-110°F	#24 SAE
66041-105°F	2" NPT
66041-140°F	2" NPT

Port Size

NOTE: All three ports on any one valve have the same thread size.

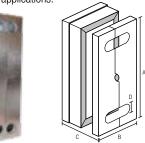

Special Temperature Ranges

1⁄2"-3⁄4"-1" NPT Part No.	1½" NPT Part No.	2" NPT Part No.
65974	65977	65978
65975	66040	66041
65976	67760	
66037	(#24 SAE)	
66038		
66039		
67365		
(#16 SAE)		

NOTE: All three ports on any one valve have the same thread size.

1⁄2"-:	1⁄2"-¾"-1" NPT		2" NPT	2" NPT		
Nominal	Temp. Range	Nominal	Temp. Range	Nominal	Temp. Range	
80	77-88	80	70-88	75	70-85	
90	80-100	90	80-100	90	85-105	
110	100-120	110	100-120	105	100-116	
120	110-130	120	110-130	120	110-130	
130	120-140	130	120-140	130	124-140	
140	130-150	140	130-150	140	135-150	
150	140-160	150	140-160	150	145-160	
160	150-170	160	150-170	155	150-165	
170	163-180	170	163-180	160	155-172	
185	175-190	175	170-185	165	160-175	
195	185-200	180	175-190	170	165-180	
200	190-210	190	185-200	180	175-190	
		200	190-210	195	188-208	
				210	200-215	

EXAMPLE: 1" NPT, Part Number 66039-90 indicates the 1" NPT valve with a nominal shift temperature of 90°F. The actual operating temperature range in this example is 80-100°F. The valve begins to open at 80°F, and is fully open at 100°F.



Accessories

All dimensions are inches unless noted otherwise.

Insulation

Insulation boxes for heating applications.

Dimensions

Part No.	А	В	C* (Approx.)	D	Thickness
56820	9.33	4.72	1.26 + .09 x NoP	1.18	.79
56821	13.11	6.38	2.00 + .09 x NoP	1.97	.79
56822	16.61	6.46	2.13 + .09 x NoP	1.97	.79
56823	16.61	6.46	2.17 + .09 x NoP	1.97	.79
56825	17.28	11.34	2.17 + .10 x NoP	3.54	.79
56826	22.52	11.34	2.68 + .09 x NoP	3.54	.79
56827	22.52	11.34	2.17 +. 10 x NoP	3.54	.79

*Only available in selected 20th NoP (20, 40, 60, etc). NoP = Number of Plates.

Rating

Maximum Working Temperature Thermal Conductivity Fire Properties Color 302°F 0.013 BTU/HrFtF° B2 in accordance with DIN 4102 Silver

Polyurethane rigid foam

Aluminum

Materials

Insulation Insulation Cover

Dimensions

Billionolo						
Part No.	Α	В	C* (Approx.)	D	Thickness	
56828	26.78	18.11	9.13 + .09 x NoP	3.15	1.97	
56829	37.80	17.32	9.84 + .10 x NoP	3.35	1.97	
56830	27.95	18.90	10.24 + .09 x NoP	3.74	1.97	

*Only available in selected 20th NoP (20, 40, 60, etc). NoP = Number of Plates.

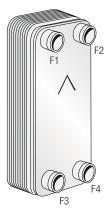
Rating

Maximum Working Temperature Thermal Conductivity Fire Properties Color 302°F 0.014 BTU/HrFtF° B2 in accordance with DIN 4102 Silver

Materials

Insulation Insulation Cover Rigid expanded polyurethane Aluminum

Installation & Maintenance


Please read carefully before attempting to assemble, install, operate or maintain the product described. Protect yourself and others by observing all safety information. Retain instruction for future reference.

GENERAL INFORMATION

Depending on material combinations, pressure ratings and functions, there are several different types of compact Brazed Plate Heat Exchangers (BPHEs). The standard materials are stainless steel, vacuum-brazed with a pure copper or nickelbased filler.

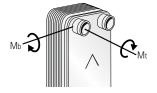
The basic materials of construction indicate the type of fluids that TTP's BPHEs can be used with. Typical examples are: synthetic or mineral oil, organic solvents, water (not seawater), glycol mixtures (ethylene and propylene glycol).

The front plate of TTP's BPHE is marked with an arrow. The purpose of this marker is to indicate the front side of the BPHE and the location of the inner and outer circuits/channels. With the arrow pointing up, the left side (Port F1, F3) is the inner circuit and the right side (Port F2, F4) is the outer circuit. For TTP asymmetric products one circuit is narrow while the other is wide, which makes it additionally important to correctly combine flow and circuit to reach design performance.

Ports F1/F2/F3/F4 are situated on the front of the heat exchanger.

DESIGN CONDITIONS

The standard pressure rating used for TTP BPHEs, i.e. for standard operating pressure, is maximum 450 psi (3.1 MPa). TTP offers a wide range of pressure ratings based on applications, from low pressures (116 psi) up to high pressures (2030 psi). TTP's standard maximum operating temperature is 437°F for copper-brazed BPHEs, and 660°F for Nickel brazed BPHEs. However, as temperature and pressure are closely coupled, there is a possibility to increase the pressure if the temperature is reduced. For details, please check the label and other technical documentation.


MOUNTING

Never expose the unit to pulsations or excessive cyclic pressure or temperature changes. It is also important that no vibrations are transferred to the heat exchanger. If there is a risk of this, install vibration absorbers. For large connection diameters, we advise you to use an expanding device in the pipeline. It is also suggested that e.g. a rubber mounting strip should be used as a buffer between the BPHE and the mounting clamp.

In single-phase applications, e.g. water-to-water or water-to-oil, the mounting direction has little or no effect on the performance of the heat exchanger.

CONNECTIONS

Allowable Connection Loads for Pipe Assembly Conditions

The maximum allowable connection loads given below are valid for low cycle fatigue. If high cycle fatigue is involved special analysis should be made.

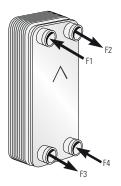
Allowable connection loads for different pipe assembly conditions

Pipe Size	Shear Force, F _s (lbf)	Tension Force, F _t (lbf)	Bending Moment, Mb (Ibf* in)	Torque, Mt (lbf* in)
1⁄2"	787	562	177	310
3⁄4"	2698	562	177	1018
1"	2518	899	398	1372
1¼"	3260	1461	774	2345
1½"	3709	2136	1372	3098
2"	4833	3035	2257	5310
21⁄2"	10004	4047	3452	12834
3"	12447	4136	5089	21773

Allowable Loads for Stud Bolt Assembly Conditions

Mounting stud bolts, in different versions and locations, are

available on the BPHEs as an option. These stud bolts are welded to the unit. The maximum allowable load on the stud bolts during assembly are stated below.


Allowable loads for different stud bolt assembly conditions:

Stud Bolt	Stress Area A _s (in²)	Tension Force F _t (lbf)	Torque M _t (Ibfin)
M6	0.032	315	27
M8	0.053	585	71
M12	0.144	1349	239

INSTALLATION OF BPHEs IN DIFFERENT APPLICATIONS

Single-Phase Applications

Normally, the circuit with the highest temperature and/or pressure should be connected on the left side of the heat exchanger when the arrow is pointing upwards. For example, in a typical water-to-water application, the two fluids are connected in a counter-current flow, i.e. the hot water inlet in connection F1, outlet F3, cold water inlet F4, outlet F2. This is because the right-hand side of the heat exchanger contains one channel

more than the left-hand side, and the hot medium is thus surrounded by the cold medium to prevent heat loss.

WATER STRAINER

A water strainer should be installed in the water inlet to protect the unit from particulate matter. 16-20 mesh minimum (20-40 mesh best choice).

PIPING

Piping must be properly supported to prevent excess strain on the heat exchanger ports. Stainless steel is typically not satisfactory for salt water service.

CLEANING

In some applications, the fouling tendency could be very high; for example when using extremely hard water. It is always possible to clean the exchanger by circulating a cleaning liquid. Use a tank with a weak acid. 5% phosphoric acid, or if the exchanger is frequently cleaned, 5% oxalic acid. Pump the cleaning liquid through the exchanger. For optimum cleaning, the cleaning solution flow rate should be a minimum of 1.5 times normal flow rate, preferably in a backflush mode. Afterwards rinse with large amounts of fresh water in order to get rid of all the acid before starting up the system again. Clean at regular intervals.

STORAGE

BPHEs are to be stored dry. The temperature should not be below 34°F and not over 122°F for long term storage (more than 2 weeks).

DISCLAIMER

TTP's BPHE performance is based on installation, maintenance and operating conditions done in conformance with these instructions. TTP cannot assume any liability for BPHEs that do not meet these criteria.

The heat exchanger is not type-approved for fatigue loading.

An API Heat Transfer Company

We COOL what you POWER

ttpsales@apiheattransfer.com www.thermaltransfer.com **Thermal Transfer Products** 5215 21st Street Racine, Wisconsin 53406-5096 USA +1.262.554.8330

API Heat Transfer PERFORMANCE IS EVERYTHING

API Heat Transfer Inc. is a global leader in the design and manufacture of a wide range of specialty heat exchangers and heat transfer solutions. Customers benefit from the industry's broadest specialty heat-exchanger portfolio, bestin-class product development and testing capabilities, and an unmatched global sales and manufacturing infrastructure. For more information visit www.apiheattransfer.com.

Global headquarters in Buffalo, NY

- Trusted partner to customers and provider of standard and custom-engineered heat transfer solutions for over 130 years
- Network of 1,800 employees with sales offices around the world
- Twelve modern manufacturing facilities worldwide
- Six business units providing premium brands and the broadest product portfolio available in today's market

See how our performance can improve yours.

USA

Arcade Facility 91 North Street Arcade, NY 14009, USA +1.585.496.5755

Buffalo Facility 2777 Walden Avenue Buffalo, NY 14225, USA +1.716.684.6700

UK

Birmingham Facility

Seeleys Industrial Park Seeleys Road, Birmingham B11 2QY, United Kingdom +44 (0) 121.766.1350

Coventry Facility Sir Henry Parkes Road Canley, Coventry CV5 6BN, United Kingdom +44 (0) 24.7667.5544

Franklin Facility

4700 Ironwood Drive Franklin, WI 53132, USA +1.414.761.4500

Iron Ridge Facility 1025 Industrial Road Iron Ridge, WI 53035, USA +1.920.387.4200

GERMANY

Bretten Facility Langenmorgen 4 75015 Bretten, Germany +49.7252.53.0

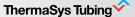
Dortmund Facility Breisenbachstrasse 87 44 357 Dortmund, Germany +49.231.9920.0

Montgomery Facility

2760 Gunter Park Dr. West Montgomery, AL 36109, USA +1.334.277.1810

Racine Facility 5215 21st Street Racine, WI 53406, USA +1.262.554.8330

CHINA


Suzhou Facilities 156 Qingqiu Street, 3rd District Suzhou Industrial Park Suzhou, Jiangsu 215126, China

+86.512.8816.8000 126 Qingqiu Street, 3rd District Suzhou Industrial Park Suzhou, Jiangsu 215126, China +86.512.8816.8000

Airtech

BP/BPS/BPCH Series

TTP Industrial Hydraulic Oil Coolers

Our full line of standard catalog industrial hydraulic oil coolers are offered by TTP, an API Heat Transfer company.

For application help and quoting, visit our full TTP website or contact

ttpsales@apiheattransfer.com

Air to Oil Cooling

Up to +500 HP of heat removal from hydraulic oil

Round tube copper, brass or steel

Brazed aluminum plate & bar (P-BAR™)

Extruded aluminum tube (T-BAR™)

Aluminum/steel fin construction

All aluminum brazed

Water to Oil Cooling

Steel, copper, copper/nickel, or stainless steel construction

Brazed plate construction

Internal fins

Diameters up to 10 inches

Lengths up to 12 feet

Product Options

Brass construction Steel construction Internal finned construction Brazed plate construction Internal bypass Seawater service

Applications

Hydraulic presses Plastic injection molding Lube oil coolers

Extrusion machinery

Gear boxes

Hydraulic power units

And more.

FLUID COOLING | Brazed Plate BPS Series

Materials

304 Stainless Steel

Plate Material 316L Stainless Steel

Braze Material Copper - Standard

Front and Back Pressure Plates

Connectors 304 Stainless Steel

Foot Mounting Brackets 304 Stainless Steel

Stud Bolts 304 Stainless Steel

Nickel/Chrome – Optional

STAINLESS STEEL CONSTRUCTION

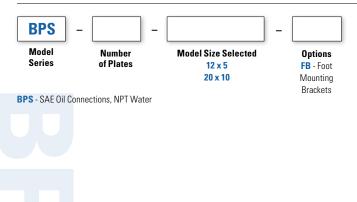
Features

- Stacked Plate
- Stainless Steel
- Copper Brazed
- Oil to Water Applications
- High Performance
- Compact Design
- SAE Connections
- Corrosion Resistant Type 316 Stainless Steel Plates
- Mounting Studs Standard
- SAE Oil Connections, NPT Water Connections
- Optional Mounting Bracket
- Optional Nickel/Chrome Brazed Construction

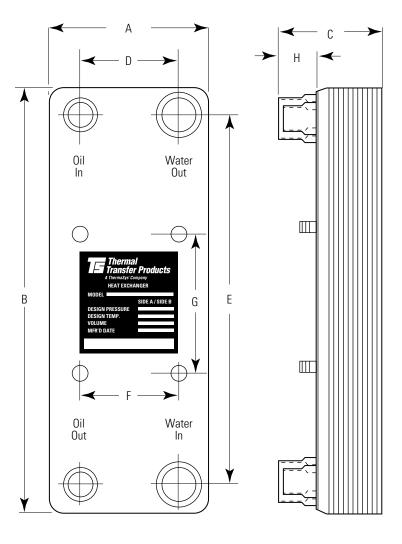
ADDITIONAL MODELS AVAILABLE – please consult factory for more information

Ratings

Maximum Working Temperature 350° F at 450 psi*


Maximum Working Pressure 450 psi**

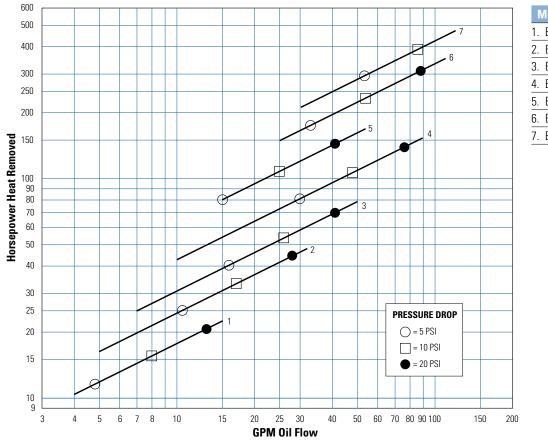
Test Pressure 600 psi


- *Maximum working temperature can increase with derating of working pressure.
- **Maximum working pressure can increase with a derating of working temperature.

Pressure rating is for copper brazed only.

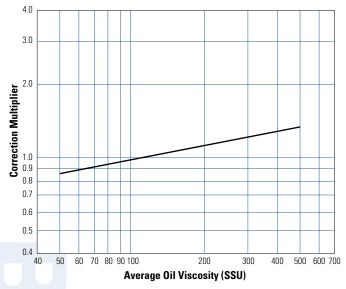
How to Order

Dimensions

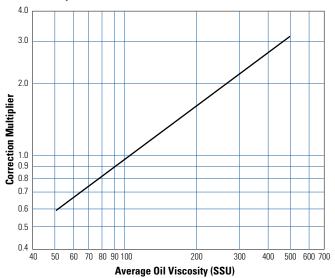


Model	A	B	C	D	E	F	G	H	1	Oil SAE	Water	Net Wt.
								SAE	NPT		NPT	lbs.
BPS-12-12x5			2.61					1.25	1.12	#12	3/4	8
BPS-24-12x5	4.0	10.0	3.75	0.7	0.0	25	25				0/ 4	12
BPS-36-12x5	4.9	12.2	5.00	2.7	9.9	2.5	3.5	1.50	1.25	#20	1-1/4	16
BPS-70-12x5			8.19								1 1/4	27
BPS-24-20x10			3.99									39
BPS-50-20x10	9.8	20.3	6.44	6.5	17.0	4.0	5.5	1.75	1.38	#24	1-1/2	68
BPS-80-20x10			9.25									100

NOTE: We reserve the right to make reasonable design changes without notice. Dimensions are in inches. SAE Connection Thread Forms: #12 SAE = 1-1/16 - 12UN-2B #20 SAE = 1-5/8 - 12UN-2B #24 SAE = 1-7/8 - 12UN-2B NPT Connections are internal threads (female).



Performance Curves



Model
1. BPS-12-12X5
2. BPS-24-12X5
3. BPS-36-12X5
4. BPS-70-12X5
5. BPS-24-20X10
6. BPS-50-20X10
7. BPS-80-20X10

Performance Correction

Pressure Drop Correction

Selection Procedure

Performance Curves are based on 100SSU oil at 40°F approach temperature (125°F oil leaving cooler, 85°F water entering cooler), 2:1 oil: water ratio (1 GPM water flow for each 2 GPM oil flow).

Step 1 Determine Curve Horsepower Heat to be Removed.

Horsepower heat load	40 Oil leaving x cooler °F x Minus water	Performance Correction Multiplier	=	Curve Horsepower Heat to be Removed
	entering cooler °F			nemoveu

Step 2

Determine Actual Oil Pressure Drop. Pressure drop shown on curve x Pressure drop correction multiplier = Actual pressure drop.

Oil Temperature

Oil coolers can be selected by using entering or leaving oil tempertures.

Typical operating temperature ranges are:						
Hydraulic Motor Oil	110°F - 130°F					
Hydrostatic Drive Oil	130°F - 180°F					
Lube Oil Circuits	110°F - 130°F					
Automatic Transmission Fluid	200°F - 300°F					

Desired Reservoir Temperature

Return Line Cooling: Desired temperature is the oil temperature leaving the cooler. This will be the same temperature that will be found in the reservoir.

Off-Line Recirculation Cooling Loop: Desired temperature is the temperature entering the cooler. In this case, the oil temperature change must be determined so that the actual oil leaving temperature can be found. Calculate the oil temperature change (Oil $\triangle T$) with this formula:

Oil $\triangle T = (BTU's/Hr.)/GPM$ Oil Flow x 210).

To calculate the oil leaving temperature from the cooler, use this formula:

Oil Leaving Temperature = Oil Entering Temperature - Oil \triangle T.

This formula may also be used in any application where the only temperature available is the entering oil temperature.

Oil Pressure Drop: Most systems can tolerate a pressure drop through the heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided. Care should be taken to limit pressure drop to 5 PSI or less for case drain applications where high back pressure may damage the pump shaft seals.

FLUID COOLING | Brazed Plate BPCH Series

STAINLESS STEEL CONSTRUCTION

Features

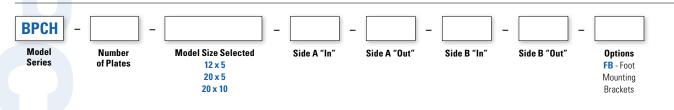
- Stacked Plate
- Stainless Steel
- Copper Brazed
- Oil to Water Applications
- High Performance
- Compact Design
- Water Chilling
- Lower Refrigerant Charge
- Specifically Designed for DX Water Chilling Applications from 1 to 40 Tons
- Unique DX Distribution Tube Assures Proper Gas Distribution and Peak Performance
- Type 316 Stainless Steel Plates
- Copper Brazed (Optional Nickel Brazing Compound)
- Optional Foot Mounting Bracket
- Optional Nickel/Chrome Brazed Construction

Ratings

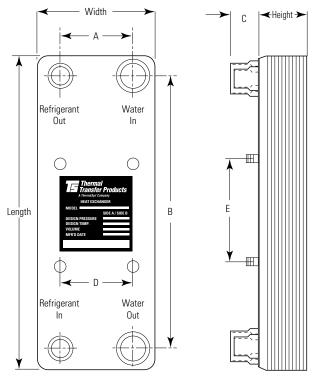
WATER COOLED BPCH

Maximum Working Temperature 350° F at 450 psi* Maximum Working Pressure 450 psi** Test Pressure 600 psi

- *Maximum working temperature can increase with derating of working pressure.
- **Maximum working pressure can increase with a derating of working temperature.


Pressure rating is for copper brazed only.

Materials


Plate Material 316L Stainless Steel Braze Material Copper – Standard Nickel/Chrome – Optional

Stud Bolts 304 Stainless Steel Front and Back Pressure Plates 304 Stainless Steel Connectors 304 Stainless Steel Foot Mounting Brackets 304 Stainless Steel

How to Order

Dimensions

Model	D	E
12 x 5	2.5″	3.5″
20 x 5	2.5″	5.5″
20 x 10	4.0"	5.5″

Model	Stud Bolts
12 x 5	Optional 3/8 - 16 x 7/8"L
	Optional 2 - 5 Tons
20 x 5	Standard 7.5 - 15 Tons
	3/8 - 24 x 7/8"L
20 x 10	Standard 1/2 - 13 x 7/8"L

Connection Type	C Dimension
1/2, 5/8, 7/8 ID Sweat & 3/4" NPT	1.125″
1-1/8 ID Sweat & 1" NPT	1.250"
1-3/8 ID Sweat & 1-1/4" NPT	1.375″
1-5/8 ID Sweat & 1-1/2" NPT	1.500"
2-1/8 ID Sweat & 2" NPT	1.750″
2-5/8 ID Sweat & 2-1/2" NPT	2.000"

Waterside Pressure Drop

GPM/ton	2.4 GPM/ton	3 GPM/ton
.8 PSI	1.6 PSI	1.9 PSI
2.7 PSI	3.8 PSI	5.6 PSI
2.7 PSI	3.9 PSI	5.7 PSI
2.6 PSI	3.8 PSI	5.9 PSI
	GPM/ton .8 PSI 2.7 PSI 2.7 PSI 2.6 PSI	.8 PSI 1.6 PSI 2.7 PSI 3.8 PSI 2.7 PSI 3.9 PSI

12" x 5" Models

	ucis						_	_		
Model	Tons	Width	Length	Height	Α	В	Refrig Out	Refrig In	Water	Wt (lbs)
BPCH 1A	1			1.3						5
BPCH 1-1/2A	1.5			1.5						6
BPCH 2A	2	4.0	10.0	1.9	27	0.0	5/8 ID - 7/8 ID	5/8 ID - 7/8 ID	7/8 ID	8
BPCH 3A	3	4.9	12.2	2.6	2.7	9.9		3/010-7/010	7/010	10
BPCH 4A	4			3.2			7/8 ID			12
BPCH 5A	5			4.2			//010			14

20" x 5" Models

	Jueis						1			
Model	Tons	Width	Length	Height	Α	В	Refrig Out	Refrig In	Water	Wt (lbs)
BPCH 1-1/2	2			1.1						8
BPCH 2	3			1.3						9
BPCH 2-1/2	2.5			1.5			5/8 ID - 7/8 ID	5/8 ID - 7/8 ID	7/8 ID	10
BPCH 3	3			1.7						12
BPCH 3-1/2	3.5			1.9						13
BPCH 4	4	5.0	20.3	2.3	2.8	18.1	7/0 10			14
BPCH 5	5			2.6			7/8 ID		1-1/8 ID	16
BPCH 7-1/2	7.5			3.8			1-1/8 ID			22
BPCH 10B	10			5.1				7/8 ID		28
BPCH 12B	12.5			6.0			1-3/8 ID	77010	1-3/8 ID	34
BPCH 15B	15]		7.0						40

20" x 10" Models

20 × 10 1	Jucis		-		-		-	-		
Model	Tons	Width	Length	Height	Α	В	Refrig Out	Refrig In	Water	Wt (lbs)
BPCH 10	10			2.6				7/8 ID		34
BPCH 12	12.5			3.2			1-3/8 ID	7/8 ID	1-5/8 ID	40
BPCH 15	15			3.7				7/010*	1-0/0 ID	45
BPCH 20	20			5.1	C F	17.0		7/8 ID*		57
BPCH 25	25	9.8	20.3	6.0	6.5	17.0	1-5/8 ID		2-1/8 ID	68
BPCH 30	30			7.0				11/010*		81
BPCH 35	35			8.8			2-1/8 ID	1-1/8 ID*	2-5/8 ID	92
BPCH 40	40	Ĩ		9.8						104

Notes: Nominal tons – 12,000 BTUH per ton, 54°F EWT, 44°F LWT, 35°F Evap. Temp., 10°F Superheat, 2.4 gpm per ton, R-22. For Glycol, special fluids or design conditions other than listed above, please contact the factory for special computer selection. *Add .75″ to height of refrigerant in connection.

SIGMAWIG All-Welded Plate Heat Exchangers

Schmidt[®] SIGMAWIG All-Welded Plate Heat Exchangers

Our line of Schmidt SIGMAWIG all-welded plate heat exchangers represents the most compact, rugged and cost-effective means of transferring heat in many industrial applications.

Built entirely without gaskets or with an O-ring type gasket between the all-welded plate pack and frame, they provide exceptional corrosion resistance. The exchanger features corrugated plates that produce highly 6.0 turbulent flow in a true counter-current direction. The result is high efficiency in a very compact design. Due to the smaller size and reduced material content, welded plate heat exchangers can be the most economical heat transfer choice. **Operating Parameters** -40°F - 570°F (-40°C - 300°C) APPLICATIONS. Temperature: Pressure: Vacuum to 580psig (35bar) Capacities: up to 1600 GPM (450m3/h) Process chemicals Connections: 1" to 6" studded or flanged Oil cooling Amine cycles **Technical Parameters** Caustic soda Heat transfer fluids Plates Standard: AISI 304 Stainless Steel Hazardous liquids (1.4301)AISI 316L Stainless Expensive fluids Steel (1.4404) Refrigeration Reactor cooling/heating Exotics: AISI 904L Stainless Steel (1.4539) SMO 254 Nickel Alloy, Ti, and Ti-Pd Alloy Thickness: 0.6 mm Frame Painted Carbon Steel, or Stainless Steel Connections Standard: AISI 316TI (1.4571)

PRODUCTS & TECHNOLOGIES | SIGMAWIG ALL-WELDED PLATE HEAT EXCHANGERS

Exotics:

Nickel alloys, Titanium

Codes and Standards

ASME, PED, GOST, GB

REDUCED LIQUID VOLUME

The standard design has all piping connections located on one end of the heat exchangers. This simplifies installation and maintenance costs. Many times, the piping alone is all that is required to adequately support the heat exchanger, thus eliminating support considerations and labor costs in packaged equipment.

API Heat Transfer welded plate heat exchangers have narrow flow channels and reduced liquid volume needs. Due to their efficiency, they can be selected to use less coolant.

RELIABLE HEAVY-DUTY CONSTRUCTION

The exchanger design features plates with computer-designed corrugations in a "chevron pattern" that is alternated from plate to plate. This yields a strong, unitized construction. There are two options for incorporating the welded plate pack into the pressure frame. The plate pack openings are joined to the nozzles of the pressure frame or for frequent temperature fluctuation. The sealing between plate pack and pressure frame is ensured by a standard O-ring sealing material like EPDM or by a special high resistant material like Viton or Kalrez. Gaskets common to other technologies are eliminated.

Graphite Block Heat Exchangers

Schmidt[®] SIGMA G-BLOC Graphite Block Heat Exchangers

Our SIGMA G-BLOC graphite block heat exchangers are ideal for use with corrosive materials, offer nearly universal corrosion resistance, and are the highest strength on the market. Made of modular, stacked graphite blocks with mounted PTFE seals between each adjoining block, the blocks are drilled in a specific pattern to optimize heat transfer through the graphite material.

PERFORMANCE NOTES.

- Compactness
- Modular construction
- Fast assembly and disassembly; extending the unit is possible
- Standardized spare parts
- Possibility to use corrosive media on both sides with a protective coating/lining on the shell side
- Outstanding corrosion resistance (GT-KELITE/GT-CARB/GT-FLON)
- SHOCK PROTECT[®] shields the blocks from water and steam hammering
- STABLE LOAD[®] limits stress fatigue on the compression springs
- STRESS FREE® avoids piping stress on graphite components
- Standard design pressure up to 115 psig (8 barg)
- Standard design temperature up to 392°F (200°C), or higher design temperatures on request
- Heat transfer surface from 3 ft2 to 7,200 ft2 (0.3 m2 to 800 m2)
- Customized design for client-specific applications

HOW IT WORKS.

- Corrosive medium flows through the axial process holes in the block
- Service medium passes through the horizontal holes of the blocks, and flow is properly directed by special baffle cages
- The complete unit is maintained under compression with a special STABLE LOAD[®] springs system

APPLICATIONS.

- Agrochemicals and heavy chemicals
- Electrolytic refining and mining, and pickling of metals
- Fine chemicals and pharmaceuticals

- Food
- Petrochemicals
- Synthetic fibers
- Photovoltaics

GRAPHITE GRADES AVAILABLE.

	GT-KELITE	GT-KELITE+
Type of Graphite	Standard	Fine grain
Impregnant	Phenolic	Phenolic
Relative Mechanical Resistance	1	1.5–3
Corrosion Resistance	Good	Better
Thermal Shock Resistance	Low	Better
Recommended for:	Mild operating conditions (pressure, temperature, corrosion)	Higher pressure and temperature frequent thermal cycles

Graphite Tube Heat Exchangers

Schmidt[®] SIGMA G-TUBE Graphite Tube Heat Exchangers

Our SIGMA G-TUBE graphite tube heat exchangers are ideal for use with corrosive materials. Made from graphite tubes that are cemented into graphite tubesheets, with the tube bundle inserted into a metal or polymer shell, the solutions from API Heat Transfer use the highest strength materials available on the market and offer nearly universal corrosion resistance.

WE OFFER TWO TYPES OF GRAPHITE TUBE HEAT EXCHANGERS:

• Our GT-TUBE-A has been optimized for high-fouling processes. Special surface properties reduce the fouling process, which results in a longer time between cleaning cycles. This reduces operating costs for many applications, such as the need to add phosphoric acid during fertilizer production.

 Our GT-TUBE-B was developed for higher corrosion resistance and higher temperatures.

PERFORMANCE NOTES.

- Largest heat transfer area possible
- High process/service section for large flow rates (15,000 m3/h)
- Low pressure drop on shell side
- Outstanding corrosion resistance (GT-KELITE)
- STABLE LOAD[®] limits stress fatigue on the compression springs
- Erosion resistance is available as an option
- Tubes are available with carbon fiber reinforcement for applications with high vibrations and mechanical stress
- Gasketed baffles on service side for cooler
- Standard design pressures up to 85 psig (6 barg)
- Standard design temperatures up to 356°F (180°C) (higher temperatures available on request)
- Heat transfer surface from 45 ft2 to 9,000 ft2 (5 m2 to 1,000 m2)
- Customized design for client-specific applications

HOW IT WORKS.

- Corrosive material flows through the tubes
- Service medium passes through the shell
- The complete unit is maintained under compression with a special STABLE LOAD[®] springs system

APPLICATIONS.

- Agrochemicals and heavy chemicals
- Electrolytic refining and mining; pickling of metals
- Fine chemicals and pharmaceuticals
- Food
- Petrochemicals
- Synthetic fibers
- Photovoltaics

GRAPHITE GRADES AVAILABLE.

	GT-KELITE	GT-KELITE+	GT-CARB
Type of Graphite	Standard	Fine grain	Standard or fine grain
Impregnant	Phenolic	Phenolic	Carbon
Relative Mechanical Resistance	1	1.5–3	1.1–1.7
Corrosion Resistance	Good	Better	Excellent
Thermal Shock Resistance	Low	Better	Excellent
Recommended for:	Mild operating conditions (pressure, temperature, corrosion)	Higher pressure and temperature; frequent thermal cycle:	temperature (non-oxidative

Heat transfer performance to the highest degree.

Everything about API Heat Transfer is focused on performance. It's a part of our 130-year heritage designing and delivering world-class heat transfer products for nearly every industry. It's bolstered by our worldwide network of manufacturing facilities and more than 1,800 employees who provide sales, service, and support. And it's ingrained in a process that has served customers around the world well for nearly a century and a half. Upon working with us, you'll find it's our performance that sets us apart. There's heat transfer. Then there's API Heat Transfer.

UNITED STATES

Buffalo, NY Global Headquarters +1.716.684.6700 2777 Walden Avenue Buffalo, NY 14225, USA

Iron Ridge, WI +1.920.387.4200 1025 Industrial Road Iron Ridge, WI 53035, USA

UNITED KINGDOM

Coventry, UK +44 (0) 24.7667.5544 Sir Henry Parkes Road Canley, Coventry CV5 6BN, United Kingdom **Arcade, NY** +1.585.496.5755 91 North Street Arcade, NY 14009, USA

Racine, WI +1.262.554.8330 5215 21st Street Racine, WI 53406, USA

GERMANY

Bretten, DE +49 (0) 7252.53.0 Langenmorgen 4 75015 Bretten, Germany

Dortmund, DE +49.231.9920.119 Breisenbachstrasse 87 44357 Dortmund, Germany Franklin, WI +1.414.761.4500 4700 Ironwood Drive Franklin, WI 53132, USA

Montgomery, AL +1.334.277.1810 2760 Gunter Park Drive West Montgomery, AL 36109, USA

CHINA

Suzhou Facility - Building 1 +86.512.8816.8000 156 Qingqiu Street, 3rd District Suzhou Industrial Park Suzhou, Jiangsu 215126, China

Suzhou Facility - Building 2 +86.512.8816.8000 126 Qingqiu Street, 3rd District Suzhou Industrial Park Suzhou, Jiangsu 215126, China

